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Linear Inequalities in One Variable

Learning Objectives:

Solve a linear inequality in one variable
and graph the solution set.

Write solutions to inequalities using interval notation.

Solve a compound inequality and graph the solution set.

Solve application problems using inequalities.
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Linear Inequalities in One Variable

An equation states that two algebraic expressions are equal,
while an inequality is a statement that indicates two algebraic
expressions are not equal in a particular way.
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Linear Inequalities in One Variable

An equation states that two algebraic expressions are equal,
while an inequality is a statement that indicates two algebraic
expressions are not equal in a particular way.

Inequalities are stated using one the following symbols:

1 less than <,
2 less than or equal to ≤,
3 greater than >,
4 or greater than or equal to ≥.
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Linear Inequalities in One Variable

Definition

Replacing the equal sign in the general linear equation
a · x + b = c by any of the symbols <,≤, > or ≥ gives a linear
inequality in one variable.

For example, 2 · x − 1 ≤ 0 and 3x + 5 > 8 are two different linear
inequalities in a single variable, x.
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Solving Linear Inequalities

Definition

The solution to any linear inequality is a SET of real
numbers.
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Solving Linear Inequalities

Definition

The solution to any linear inequality is a SET of real
numbers.

For example, {x | x < −2} is shorthand notation for the set of real
numbers less than −2.

{x | x < −2}
ւ ↓ ց

x
︷     ︸︸     ︷

such that
︷                                        ︸︸                                        ︷

x is any real number less than −2
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✞

✝

☎

✆
Addition Property for Inequalities

For any three algebraic expressions A ,B and C,

If A < B

then A + C < B + C

In words: Adding the same quantity to both sides of an inequality
will not change the solution set.

We can use the Addn. Prop. to write equivalent inequalities.
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Example 1 Solve the inequality, 5x + 4 < 4x + 2, then
graph the solution.
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Example 1 Solve the inequality, 5x + 4 < 4x + 2, then
graph the solution.

Solution: Try to get the variable terms on the left-hand side of
the inequality, and the constant terms on the right-hand side.
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Example 1 Solve the inequality, 5x + 4 < 4x + 2, then
graph the solution.

Solution: Try to get the variable terms on the left-hand side of
the inequality, and the constant terms on the right-hand side.

5x + 4 < 4x + 2

5x + 4 + (−4) < 4x + 2 + (−4) Addition Prop. of Inequalities

5x+

(

4 + (−4)

)

< 4x+

(

2 + (−4)

)

Associative Prop. of Addition

5x + 0 < 4x + (−2) Additive Inverse & Closure Props.

5x < 4x − 2 Additive Identity &

the Defn. of Subtraction
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Example 1 Solve the inequality, 5x + 4 < 4x + 2, then
graph the solution.

Solution:
5x < 4x − 2

5x + (−4x) < 4x − 2 + (−4x) Addition Prop. of Inequalities

5x + (−4x) < 4x + (−4x) − 2 Commutative Prop. of Addn.

(

5x + (−4x)

)

<

(

4x + (−4x)

)

− 2 Associative Prop. of Addn.

(5 − 4) · x < 0 − 2 Distributive & Additive

Inverse Props.

1 · x < −2 Closure & Additive

Identity Props.

x < −2 Multiplicative Identity Prop.
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Example 1 Solve the inequality, 5x + 4 < 4x + 2, then
graph the solution.
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Example 1 Solve the inequality, 5x + 4 < 4x + 2, then
graph the solution.

Conclusion: The solution set of the given inequality is
{x | x < −2}. This is called writing the solution using set notation
(or set-builder notation).
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Example 1 Solve the inequality, 5x + 4 < 4x + 2, then
graph the solution.

Conclusion: The solution set of the given inequality is
{x | x < −2}. This is called writing the solution using set notation
(or set-builder notation).

Graph: We can shade the number line to the left of −2 to give a
graphical description of the solution set.

x)
−2 0

Professor Tim Busken Linear Inequalities in One Variable



Example 1 Solve the inequality, 5x + 4 < 4x + 2, then
graph the solution.

Conclusion: The solution set of the given inequality is
{x | x < −2}. This is called writing the solution using set notation
(or set-builder notation).

Graph: We can shade the number line to the left of −2 to give a
graphical description of the solution set.

x)
−2 0

We use a left-opening parenthesis at −2 to indicate that −2 is not
part of the solution set.
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Example 1 Solve the inequality, 5x + 4 < 4x + 2, then
graph the solution.

An alternate and more compact way of writing the solution set is

(−∞,−2)
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Example 1 Solve the inequality, 5x + 4 < 4x + 2, then
graph the solution.

An alternate and more compact way of writing the solution set is

(−∞,−2)

This gives us 3 equivalent representations of the solution set to the
original inequality:
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Example 1 Solve the inequality, 5x + 4 < 4x + 2, then
graph the solution.

An alternate and more compact way of writing the solution set is

(−∞,−2)

This gives us 3 equivalent representations of the solution set to the
original inequality:

Set Notation
{x | x < −2}
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Example 1 Solve the inequality, 5x + 4 < 4x + 2, then
graph the solution.

An alternate and more compact way of writing the solution set is

(−∞,−2)

This gives us 3 equivalent representations of the solution set to the
original inequality:

Set Notation
{x | x < −2}

Line Graph

x)
−2 0
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Example 1 Solve the inequality, 5x + 4 < 4x + 2, then
graph the solution.

An alternate and more compact way of writing the solution set is

(−∞,−2)

This gives us 3 equivalent representations of the solution set to the
original inequality:

Set Notation
{x | x < −2}

Line Graph

x)
−2 0

Interval Notation
(−∞,−2)
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Properties of Inequalities

✞

✝

☎

✆
Multiplication Property of Inequalities

For any three algebraic expressions A ,B and C, where C , 0,

If A < B ,

then C · A < C · B if C is positive (C > 0)

or C · A > C · B if C is negative (C < 0)
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Properties of Inequalities

✞

✝

☎

✆
Multiplication Property of Inequalities

For any three algebraic expressions A ,B and C, where C , 0,

If A < B ,

then C · A < C · B if C is positive (C > 0)

or C · A > C · B if C is negative (C < 0)

In words: Multiplying both sides of an inequality by a positive
quantity always produces an equivalent inequality. Multiplying both
sides of an inequality by a negative number produces an equivalent
inequality BUT it reverses the direction of the inequality symbol.
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Example 2 Determine what set is the solution to
−2x − 3 ≤ 3
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Example 2 Determine what set is the solution to
−2x − 3 ≤ 3

Solution:

−2x − 3 ≤ 3

−2x − 3 + 3 < 3 + 3 Addition Prop. of Inequalities

−2x ≤ 6 Additive Inverse & Identity Props

(

−
1
2

)

· (−2x) ≥

(

−
1
2

)

· 6 Multiplication Prop. of Inequalities

x ≥ −3 Closure
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Example 2 Determine what set is the solution to
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Solution:

−2x − 3 ≤ 3
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(

−
1
2

)

· (−2x) ≥
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−
1
2

)
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Set Notation
{x | x ≥ −3}
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Example 2 Determine what set is the solution to
−2x − 3 ≤ 3

Solution:

−2x − 3 ≤ 3

−2x − 3 + 3 < 3 + 3 Addition Prop. of Inequalities

−2x ≤ 6 Additive Inverse & Identity Props

(

−
1
2

)

· (−2x) ≥

(

−
1
2

)

· 6 Multiplication Prop. of Inequalities

x ≥ −3 Closure

Set Notation
{x | x ≥ −3}

Line Graph

x

0−3
[

Interval Notation
[−3,∞)
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Interval Notation and Graphing

Inequality
Notation
x < −2

Interval
Notation
(−∞,−2)

Graph Using
Parenthesis/Brackets

x)
−2 0

Graph using open
and closed circles

x

−2 0
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Interval Notation and Graphing

Inequality
Notation
x < −2

Interval
Notation
(−∞,−2)

Graph Using
Parenthesis/Brackets

x)
−2 0

Graph using open
and closed circles

x

−2 0

x ≤ −2 (−∞,−2] x

0−2
] x

−2 0
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Interval Notation and Graphing

Inequality
Notation
x < −2

Interval
Notation
(−∞,−2)

Graph Using
Parenthesis/Brackets

x)
−2 0

Graph using open
and closed circles

x

−2 0

x ≤ −2 (−∞,−2] x

0−2
] x

−2 0

x ≥ −3 [−3,∞) x

0−3
[ x

0−3
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Interval Notation and Graphing

Inequality
Notation
x < −2

Interval
Notation
(−∞,−2)

Graph Using
Parenthesis/Brackets

x)
−2 0

Graph using open
and closed circles

x

−2 0

x ≤ −2 (−∞,−2] x

0−2
] x

−2 0

x ≥ −3 [−3,∞) x

0−3
[ x

0−3

x > −3 (−3,∞) x

0−3
( x

0−3
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Linear Inequalities in One Variable

Classroom Example: Solve the following inequality.

3(2x + 5) ≤ −3x
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Linear Inequalities in One Variable

Classroom Examples: Take the next five minutes to work these
6 problems. Graph the solution set to the given inequality, then
write the solution set using interval notation.

x ≤ −6

x > 5

x ≥ −1

x > 10

Classroom Examples: Solve each inequality. Graph the
solution set, then write the solution set using interval notation.

2x − 1 ≤ −6

−3x < 2x − 6
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Linear Inequalities in One Variable

Definition

A compound inequality is two or more simple inequalities {sets}
joined by the terms ’and’ or ’or’ .

For Example, the set

{

x

∣
∣
∣
∣
∣
∣
3x − 6 ≤ −3 or 3x − 6 ≥ 3

}

is a

compound inequality.
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The inequality statement −7 < x < 7 is to be read “x is in between
−7 and 7.”
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The inequality statement −7 < x < 7 is to be read “x is in between
−7 and 7.” The statement −7 < x < 7 is called a composite
inequality because it is composed of the intersection of the sets
described by −7 < x AND x < 7.
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The inequality statement −7 < x < 7 is to be read “x is in between
−7 and 7.” The statement −7 < x < 7 is called a composite
inequality because it is composed of the intersection of the sets
described by −7 < x AND x < 7. We can use the coordinate line
to illustrate each solution set as follows:
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The inequality statement −7 < x < 7 is to be read “x is in between
−7 and 7.” The statement −7 < x < 7 is called a composite
inequality because it is composed of the intersection of the sets
described by −7 < x AND x < 7. We can use the coordinate line
to illustrate each solution set as follows:

✲

-7

{x |x > −7}x axis ❝ >
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The inequality statement −7 < x < 7 is to be read “x is in between
−7 and 7.” The statement −7 < x < 7 is called a composite
inequality because it is composed of the intersection of the sets
described by −7 < x AND x < 7. We can use the coordinate line
to illustrate each solution set as follows:

✲

-7

{x |x > −7}x axis ❝ >

✲
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{x |x < 7}x axis < ❝
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The inequality statement −7 < x < 7 is to be read “x is in between
−7 and 7.” The statement −7 < x < 7 is called a composite
inequality because it is composed of the intersection of the sets
described by −7 < x AND x < 7. We can use the coordinate line
to illustrate each solution set as follows:

✲

-7

{x |x > −7}x axis ❝ >

✲

7
{x |x < 7}x axis < ❝

✲

7
{x | − 7 < x < 7}x axis

-7
❝ ❝
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Linear Inequalities in One Variable

Classroom Examples: Solve the following compound
inequalities. Graph the solution set on a number line, then write
the solution set using interval notation.

−7 ≤ 2x + 1 ≤ 7

3x − 6 ≤ −3 or 3x − 6 ≥ 3
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Interval Notation and Graphing

Inequality
Notation
−4 < x < 3

Interval
Notation
(−4, 3)

Graph Using
Parenthesis/Brackets

x)(
3−4

Graph using open
and closed circles

x

−4 3
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Interval Notation and Graphing

Inequality
Notation
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Interval Notation and Graphing

Inequality
Notation
−4 < x < 3

Interval
Notation
(−4, 3)

Graph Using
Parenthesis/Brackets

x)(
3−4

Graph using open
and closed circles

x

−4 3

−4 ≤ x ≤ 3 [−4, 3] x

−4
[

3
] x

−4 3

−4 < x ≤ 3 (−4, 3] x

3−4
( ] x

−4 3

−4 ≤ x < 3 [−4, 3) x

3
)

−4
[ x

−4 3
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Equations with Absolute Value

Theorem

Suppose a and b are any real numbers with the restriction that
b > 0. Then the equation |a | = b is equivalent to a = b or a = −b.

Professor Tim Busken Linear Inequalities in One Variable



Equations with Absolute Value

Theorem

Suppose a and b are any real numbers with the restriction that
b > 0. Then the equation |a | = b is equivalent to a = b or a = −b.

Classroom Examples: Solve the following absolute value
equations.

|x | = 4

|3x − 6| = 9

|4x − 3|+ 2 = 3
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