Objectives

- Graph $f(x) = ax^2$
- Graph $f(x) = a(x-h)^2$
- Graph $f(x) = a(x-h)^2 + k$
- Given a quadratic function stated in standard form, $f(x) = ax^2 + bx + c$, learn how to complete the square in order to put the function definition into vertex form, $f(x) = a(x-h)^2 + k$
- Graph Identify domains and ranges for quadratic functions.
- Graph Find minimum and maximum values of quadratic functions

Exercises

1. Graph each of the following quadratic functions.

$$a) \quad f(x) = 2x^2$$

$$f(x) = \frac{1}{2}x^2$$

$$c) f(x) = -2x^2$$

$$f(x) = -\frac{1}{2}x^2$$

e)
$$f(x) = (x-3)^2$$

f)
$$f(x) = -(x-3)^2$$

g)
$$f(x) = -2(x+3)^2$$

h)
$$f(x) = (x+1)^2 + 3$$

i)
$$f(x) = (x-3)^2$$

j)
$$f(x) = 2(x+3)^2$$

k)
$$f(x) = (x+1)^2 + 3$$

1)
$$f(x) = 3(x+1)^2 - 2$$

$\mathsf{GRAPHING}\,f(x)\,=\,ax^2$

The graph of $f(x) = ax^2$ is a parabola with x = 0 as its axis of symmetry. Its vertex is the origin.

For a > 0, the parabola opens upward. For a < 0, the parabola opens downward.

If |a| is greater than 1, the parabola is narrower than $y = x^2$.

If |a| is between 0 and 1, the parabola is wider than $y = x^2$.

GRAPHING $f(x) = a(x - h)^2$

The graph of $f(x) = a(x - h)^2$ has the same shape as the graph of $y = ax^2$.

- If h is positive, the graph of $y = ax^2$ is shifted h units to the right.
- If h is negative, the graph of $y = ax^2$ is shifted |h| units to the left.
- The vertex is (h, 0), and the axis of symmetry is x = h.

GRAPHING $f(x) = a(x - h)^2 + k$

The graph of $f(x) = a(x - h)^2 + k$ has the same shape as the graph of $y = a(x - h)^2$.

- If *k* is positive, the graph of $y = a(x h)^2$ is shifted *k* units up.
- If k is negative, the graph of $y = a(x h)^2$ is shifted |k| units down.
- The vertex is (h, k), and the axis of symmetry is x = h.
- For a > 0, the minimum function value is k. For a < 0, the maximum function value is k.