Objectives

- Find square roots without a calculator
- Simplify expressions of the form $\sqrt[n]{a^n}$
- · Evaluate radical functions and find the domain of radical functions

Definition 1. The **square** of a number is the number times itself.

For instance, the square of 4 is 16 because 4^2 or $(4) \cdot (4) = 16$. The square of -4 is also 16 because $(-4)^2 = 16$ $(-4) \cdot (-4) = 16.$

Definition 2. The reverse process of squaring is finding a square root.

For example, a square root of 16 is 4 because $4^2 = 16$. A square root of 16 is also -4 because $(-4)^2 = (-4) \cdot (-4) = (-4)$

Theorem 1. Every positive number has two square roots.

For instance, the square roots of 25 are 5 and -5.

We use the symbol $\sqrt{}$, called a radical sign, to indicate the positive (or "principal") square root. **Definition 3.**

For example,

$$\sqrt{25} = 5$$
 because $5^2 = 25$ and 5 is positive.

$$\sqrt{9} = 3$$
 because $3^2 = 9$ and 3 is positive.

Note: it is a common mistake to assume that an expression like $\sqrt{25}$ indicates both square roots, 5 and -5. The expression $\sqrt{25}$ indicates only the positive square root of 25, which is 5. If we want the negative square root, we must use a negative sign in front of the radical sign.

 $-\sqrt{25}$ which is -5. We write the negative square root of 25 as

The square root, $\sqrt{}$, of a positive number a is the positive number b whose square is a. In symbols, **Definition 4.**

$$\sqrt{a} = b$$
 if and only if $b^2 = a$

Guideline: When finding the square root of a positive number, ask yourself: What number times itself is the number under the radical symbol equal to?

Exercises

- Find the square roots of 169
- Simplify
 - a) $\sqrt{100}$

- b) $\sqrt{64}$ c) $-\sqrt{81}$ d) $-\sqrt{121}$
- e) $\sqrt{-16}$

Theorem 2. A square root of a negative number is not a real number.

Proof. Suppose, on the contrary, that there is a real number that is the square root of a negative number. Let a represent any positive number. Then -a represents any negative number. Consider the square root of -a. Suppose it's equal to some real number b. That is, suppose

$$\sqrt{-a} = b$$

Then, by the definition of square root, it must be the case that $b^2 = -a$. However, a positive number times itself is a positive number, so $b^2 \neq -a$. Since we derived a contradiction, our assumption that there exists a real number b that is the square root of a negative number must be false. So, there is no real number b whose square is negative a.

Definition 5. The quantity under the radical symbol is called the **radicand**. The radical symbol and the radicand make up what is called a **radical expression**.

Definition 6. A radical function in x is a function defined by an expression containing a root of x. The domain of a square root function is the set of real numbers for which the radicand is nonnegative.

For example, let $f(x) = \sqrt{6-2x}$. Then,

$$f(-15) = \sqrt{6 - 2(-15)} = \sqrt{6 + 30} = \sqrt{36} = 6$$

and

$$f(11) = \sqrt{6-2(11)} = \sqrt{6-22} = \sqrt{-16}$$
, not a real number.

The domain of f: Set the radicand greater than or equal to zero. The domain is the solution set (interval) of the inequality.

$$6-2x \ge 0$$

 $6 \ge 2x$ (add $2x$ to both sides)
 $2x \le 6$ (symmetric property of inequality)
 $x \le 3$ (divide)

$$\implies dom(f) = (-\infty, 3]$$

Exercises:

- 3. Evaluate each square root function for x = -1 a) $f(x) = \sqrt{\frac{198 2x}{2}}$ b) $g(x) = \sqrt{\frac{47 x}{3}}$
- 4. Find the domain of each function given in the previous question.

Definition 7. Numbers like $\frac{1}{4}$, $\frac{4}{25}$, 9 and 36 are called **perfect squares** because their square root is a whole number or a fraction.

A square root such as $\sqrt{21}$ cannot be written as a whole number or a fraction since 21 is not a perfect square. It can be approximated by estimating, by using a table, or by using a calculator. We can however, estimate what two whole numbers $\sqrt{21}$ is between.

Theorem 3. For any real number a,

$$\sqrt{a^2} = |a|$$

Exercises:

- Simplify. Assume that the letters can represent any real number so use absolute value notation when necessary. If a root cannot be simplified, state this.
- a) $\sqrt{4x^2}$ b) $\sqrt{(t+4)^2}$ c) $\sqrt{x^2-4x+4}$ d) $\sqrt{a^{10}}$ e) $\sqrt{x^{14}}$ f) $\sqrt{y^{20}}$

Definition 8. A number is called a perfect cube number if it is equal to some rational number raised to the third

power. For example, 343 and $\frac{1}{64}$ are perfect cube numbers since

$$343 = 7^3$$
 and $\frac{1}{64} = \left(\frac{1}{4}\right)^3$

Definition 9. The cube root, $\sqrt[3]{}$ of a number a is the number b whose cube is a. In symbols,

$$\sqrt[3]{a} = b$$
 if $b^3 = a$

For example,

$$\sqrt[3]{125} = 5$$
 since $5^3 = 125$ and

When finding the cube root of a number, ask yourself: What number cubed (raised to the third power) Guideline: is the number under the radical symbol equal to?

The number 3 in the radical expression $\sqrt[3]{125}$ is called the index of the radical. The index of a radical must be a positive integer greater than 1. If no index is written, it is assumed to be 2.

Exercises:

- Find the given cube root.
 - a)
- $\sqrt[3]{8}$ b) $\sqrt[3]{-8}$ c) $-\sqrt[3]{\frac{1}{8}}$ d) $\sqrt[3]{-27}$ e) $\sqrt[3]{x^6}$

- $\sqrt[3]{y^{21}}$ g) $\sqrt[3]{-t^{15}}$ h) $\sqrt[3]{-8x^6}$ i) $\sqrt[3]{-64x^{21}}$

Definition 10. $f(x) = \sqrt[3]{x}$ is called the **cube root function**. Since we can find a cube root for any number (positive, negative or zero), $dom(f) = (-\infty, \infty)$.

Exercises:

- Graph $f(x) = \sqrt{x}$ and $g(x) = \sqrt[3]{x}$ 7.
- Find f(-1) and f(0) for $f(x) = \sqrt[3]{6-2x}$ 8.
- 9. Find the domain of $f(x) = \sqrt[3]{6-2x}$

 \square Not every cube root is a perfect cube number. For instance, $\sqrt[3]{7}$ is not a perfect cube number. But $\sqrt[3]{7}$ is a real number. It just so happens that $\sqrt[3]{7}$ is an instance of an irrational number — a number whose decimal equivalent has an infinite number of digits right of the decimal point and those digits occur with no predictable or repeatable pattern. We can, however, find a rational number that best approximates $\sqrt[3]{7}$, which is what computers and calculators do. In this case, $\sqrt[3]{7} \approx 1.913$ since $1.913^3 \approx 7.000755497$.

Definition 11. The fourth root, $\sqrt[4]{}$ of <u>a positive number</u> a is the number b such that

$$\sqrt[4]{a} = b$$
 if $b^4 = a$

For example,

$$\sqrt[4]{16} = 2$$
 since $2^4 = 16$

Moreover, $\sqrt[4]{-16}$ is not a real number since there is no real number we can raise to the fourth power and obtain -16.

Exercises:

10.

a)
$$\sqrt[4]{1}$$
 b) $-\sqrt[6]{1}$

b)
$$-\sqrt[4]{\frac{1}{16}}$$
 c) $\sqrt[4]{81x^4}$ d) $\sqrt[4]{-16}$ e) $\sqrt[4]{y^8}$ f) $\sqrt[4]{81x^{32}}$

d)
$$\sqrt[4]{-16}$$

e)
$$\sqrt[4]{y^3}$$

f)
$$\sqrt[4]{81x^{32}}$$

There are also fifth roots, sixth roots, seventh roots, and so on. As a generalization, we call $\sqrt[n]{a}$ the n^{th} root of a. The number n is the index.

Definition 12. The n^{th} **root**, $\sqrt[n]{a}$, of a positive number a is the number b such that

$$\sqrt[n]{a} = b$$
 if $b^n = a$

We can use the following chart to help summarize the fine print of the definition.

n	a	$\sqrt[n]{a}$	$\sqrt[n]{a^n}$
Even	Positive	Positive	а
	Negative	Not a real number	-a
Odd	Positive	Positive	a
	Negative	Negative	а

It needs to be clear that we cannot take an even root of a negative number!!!

Every real number has one root when n is odd. Every positive real number has two real roots when n is even. An even root of a negative number is not a real number.

If *n* is even, then
$$\sqrt[n]{a^n} = |a|$$
.

If *n* is odd, then
$$\sqrt[n]{a^n} = a$$
.

Exercises:

- Simplify. Use absolute value notation when necessary.
 - $\sqrt[3]{x^{12}}$
- b) $\sqrt[4]{(-3x)^4}$ c) $\sqrt[6]{(4-x)^6}$
- Simplify. Assume that no radicands were formed by raising negative quantities to even powers. Thus, absolute value notation is not necessary.
 - a) $\sqrt{25x^2}$
- b) $-\sqrt[3]{(x+2)^3}$ c) $\sqrt[4]{256y^4}$

Finding the Domain:

- ullet When the index of the expression is odd, the domain is the set of real numbers, ${\mathbb R}$
- When the index of the expression is even, the domain is the set of values that make the radicand non-negative upon substitution.

Exercises:

13. Find the domains for each function.

a)
$$f(x) = \sqrt{x-1}$$

b)
$$f(x) = \sqrt[4]{1 - 2x}$$

b)
$$f(x) = \sqrt[4]{1-2x}$$
 c) $f(x) = \sqrt[5]{2x-1}$

Answers: 1) -13,13 2a) 10 -9,2d) -112e) not a real number 2b) 8, 2c)

- |2x|10 4a) $(-\infty, 99]$ 5b) |t+4|, 3a) 3b) 4, 4b) $(-\infty, 47]$ 5a)
- 5f) y^{10} , |x-2| $|a^{5}|,$ $|x^{7}|,$ 6b) 5c) 5d) 5e) 6a) 2 -2,6c) -1/2,
- 6e) x^2 , y^7 , 6i) $-4x^7$, 6d) 6f) 6g) $(-t)^{5}$ 6h) $-2x^2$,

7)

- 2, 0 9) $(-\infty,\infty)$ 8)
- 10a) 1 10b) -1/16, 10c) |3x|, 10d) not a real number 10e) |3x|, 10f) |3x|,
- x^4 11a) 11b) 3|x|, 11c) |4-x|,
- 12a) 12b) -(x+2), 12c) 4y, 5*x*
- 13b) $(-\infty, 1/2],$ 13c) $(-\infty, \infty)$ 13a) $[1,\infty)$