Logarithmic Functions

Name: _____

Definition 1. Let a > 0 and $a \ne 1$. Then $\log_a(x)$ is the exponent we raise a to get x.

1. Write, in words, the meaning of $log_5(25)$.

2. What number does $log_5(25)$ represent?

2. _____

3. Write, in words, the meaning of $log_7(1)$.

4. What number does $log_7(1)$ represent?

4. _____

5. Write, in words, the meaning of $\log_{\frac{1}{2}}(16)$.

6. What number does $\log_{\frac{1}{2}}(16)$ represent?

6. ____

Definition 2. Let a be a positive number with $a \neq 1$. The logarithm function with base a, denoted log_a , is defined by

$$\left[\log_a x = y\right] \iff \left[a^y = x\right]$$

So $\log_a(x)$ is the exponent we raise a to get x.

Write each in logarithmic form.

7.
$$2^4 = 16$$

7. _____

8.
$$10^4 = 10,000$$

8. _____

9.
$$0.001 = 10^3$$

9. _____

10.
$$\left(\frac{1}{3}\right)^{-2} = 9$$

10. _____

11.
$$10^{x+5} = 10$$

11. _____

Write each in exponential form.

12.
$$\log_3\left(\frac{1}{81}\right) = -4$$

12. _____

13.
$$\log_7 49 = 2$$

13. _____

14.
$$\log_5 125 = 3$$

14. _____

15.
$$\log_4 x = \frac{1}{2}$$

15. _____

16.
$$\log_x 9 = 2$$

16. _____

Properties of Logarithms

Property Reason

1. $\log_a 1 = 0$ We must raise a to the power 0 to get 1.

2. $\log_a a = 1$ We must raise a to the power 1 to get a.

3. $\log_a a^x = x$ We must raise a to the power x to get a^x .

4. $a^{\log_a x} = x$ $\log_a x$ is the power to which a must be raised to get x.

Evaluate Each Expression.

17.
$$\log_3 1$$

17. _____

18.
$$\log_4 64$$

18. _____

19.
$$\log_8 8^{17}$$

19. _____

20.
$$\log_{10} \sqrt{10}$$

20. _____

21.
$$3^{\log_3 8}$$

21. _____

22. _____

Sketch the graphs of $f(x) = 2^x$ and $f^{-1}(x) = \log_2(x)$ on the same set of axes.

X	2^x
-4	
-3	
-2	
-1	
0	
1	
2	
3	
4	
	'

23. What interval represents the domain of $f^{-1}(x)$?

23. _____

- 24. What equation represents the vertical asymptote for $f^{-1}(x)$?
- 24. _____

25. What interval represents the range of $f^{-1}(x)$?

25. _____

Graph

 $g(x) = \log_4(x).$

26. What interval represents the domain of g(x)?

26. _____

27. What equation represents the vertical asymptote for g(x)?

27. _____

28. What interval represents the range of g(x)?

28. _____

Definition 3. The logarithm with base 10 is called the **common logarithm** and is described by omitting the base:

$$\log(x) = \log_{10}(x)$$

Definition 4. The logarithm with base e is called the natural logarithm and is denoted by ln:

$$\ln(x) = \log_e(x)$$