Properties of Logarithmic Functions

Laws of Logarithms

Let a be a positive number, with $a \ne 1$. Let A, B and C be any real numbers with A > 0 and B > 0.

1.
$$\log_a(AB) = \log_a A + \log_a B$$

$$2. \quad \log_a\left(\frac{A}{B}\right) = \log_a A - \log_a B$$

$$3. \quad \log_a(A^C) = C \cdot \log_a A$$

1. Evaluate each expression.

(a)
$$\log_4 2 + \log_4 32$$

(b)
$$\log_2 80 + \log_2 5$$

(c)
$$-\frac{1}{3}\log 8$$

2. Use the Laws of Logarithms to expand each expression.

(a)
$$\log_2(6x) + \log_5(x^3y^6)$$

(b)
$$\log_5(x^3y^6)$$

(c)
$$\log\left(\frac{ab}{\sqrt[3]{c}}\right)$$

3. Combine
$$4 \log x + \frac{1}{2} \log(x+2)$$
 into a single logarithm.

4. Combine
$$3 \log x + \frac{1}{2} \log y - 5 \log(x^2 + 2)$$
 into a single logarithm.

Change of Base Formula

$$\log_d n = \frac{\log_a n}{\log_a d} = \frac{\ln n}{\ln d} = \frac{\log n}{\log d}$$

Use the Change of Base Formula and a calculator to evaluate the logarithm, rounded to six decimal places.

5. $\log_3 6$

5. _____

6. $\log_7 48$

ó. _____

7. log₁₅ 97

7. _____