The Natural Exponential Function

Definition 1. The number e is defined as the value that $A(n) = \left(1 + \frac{1}{n}\right)^n$ approaches as n becomes large. This number is approximately 2.71.

n	$A(n) = \left(1 + \frac{1}{n}\right)^n$
1	2.00
2	2.25

2.370370

Definition 2. The natural exponential function is the exponential function

$$f(x) = e^x$$

with base e.

5	2.488320
100	2.704814
365	2.714567

Graph $f(x) = e^x$.

1. What interval represents the domain of f(x)?

1. _____

2. What equation represents the vertical asymptote for f(x)?

2. _____

3. What interval represents the range of f(x)?

3. _____

Properties of Natural Logarithms

Property Reason

- 1. ln 1 = 0 We must raise e to the power 0 to get 1.
- 2. $\ln e = 1$ We must raise e to the power 1 to get e.
- 3. $\ln e^x = x$ We must raise e to the power x to get e^x .
- 4. $e^{\ln x} = x$ ln x is the power to which e must be raised to get x.

Evaluate Each Expression.

4.
$$\ln e^{-3}$$

4. _____

5.
$$\ln\left(\frac{1}{e^4}\right)$$

5. _____

6. ____

Definition 3. The logarithm with base e is called the natural logarithm and is denoted by ln:

$$\ln(x) = \log_e(x)$$

Find the domain of each function.

7.
$$f(x) = \log_2(4 - x^2)$$

7. _____

$$8. \quad f(x) = \ln(x+2)$$

8. _____

9.
$$f(x) = \log_7(1 - 2x) + 4$$

9.