Sets

Combinations

Function Composition

Inverse

Function Combinations & Compositions. One-to-one & Inverse Functions

Professor Tim Busken

Mathematics Department

January 14, 2015

Intersection of Sets

Function Combinations

Function Composition

One to One

Inverse Functions

Set Intersection

The <u>intersection</u> of two sets A and B, written A \cap B, is the set of all elements (numbers) that are in both A and B. The \cap symbol means the word "and."

Example: Suppose A = $\{1,2,3,4\}$ and B = $\{2,4,20\}$. Then A \cap B = $\{2,4\}$

Intersection of Sets

Combinations

One to One

Functions .

Inverse Functions

Set Intersection

The <u>intersection</u> of two sets A and B, written A \cap B, is the set of all elements (numbers) that are in both A and B. The \cap symbol means the word "and."

Example: Suppose A = $\{1,2,3,4\}$ and B = $\{2,4,20\}$. Then A \cap B = $\{2,4\}$

Example: $A = [0, \infty)$ and $B = (-\infty, \infty)$.

xaxis
$$x \in [0, \infty)$$

xaxis
$$\leftarrow$$
 (- ∞ , ∞)

Intersection of Sets

Function Combinations

Function Composition

One to One Functions

Inverse

Set Intersection

The <u>intersection</u> of two sets A and B, written A \cap B, is the set of all elements (numbers) that are in both A and B. The \cap symbol means the word "and."

Example: Suppose A = $\{1,2,3,4\}$ and B = $\{2,4,20\}$. Then A \cap B = $\{2,4\}$

Example: $A = [0, \infty)$ and $B = (-\infty, \infty)$.

xaxis
$$A \cap B \equiv [0, \infty)$$

Inverse Function

Algebra of Functions

Let f and g be functions with domains A and B. Then the functions $f+g,\ f-g,\ fg,\$ and f/g are defined as follows:

$$(f+g)(x) = f(x) + g(x)$$
 domain A \cap B

$$(f-g)(x) = f(x) - g(x)$$
 domain A \cap B

$$(f \cdot g)(x) = f(x) \cdot g(x)$$
 domain $A \cap B$

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$
 domain $\{x \in A \cap B \mid g(x) \neq 0\}$

Algebra of Functions

Let f and g be functions with domains A and B. Then the functions f + g, f - g, fg, and f/gare defined as follows:

$$(f+g)(x) = f(x) + g(x) \qquad \text{domain A} \cap B$$

$$(f-g)(x) = f(x) - g(x) \qquad \text{domain A} \cap B$$

$$(f \cdot g)(x) = f(x) \cdot g(x) \qquad \text{domain A} \cap B$$

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)} \qquad \text{domain } \{x \in A \cap B \mid g(x) \neq 0\}$$

Example: Suppose
$$f(x) = \sqrt{x}$$
, $g(x) = x^2$ and $h(x) = (f+g)(x) = \sqrt{x} + x^2$.

Inverse Functions

Algebra of Functions

Let f and g be functions with domains A and B. Then the functions $f+g,\ f-g,\ fg,\$ and f/g are defined as follows:

$$(f+g)(x) = f(x) + g(x)$$
 domain A \cap B

$$(f-g)(x) = f(x) - g(x)$$
 domain A \cap B

$$(f \cdot g)(x) = f(x) \cdot g(x)$$
 domain A \cap B

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$
 domain $\{x \in A \cap B \mid g(x) \neq 0\}$

Example: Suppose
$$f(x) = \sqrt{x}$$
, $g(x) = x^2$ and $h(x) = (f+g)(x) = \sqrt{x} + x^2$.

xaxis
$$dom(f) \equiv [0, \infty)$$

$$\frac{dom(h) \equiv dom(f) \cap dom(g) \equiv [0, \infty)}{}$$
 xaxis

Sets

Function Combinations

Function Composition

One to One Functions

Functions

Composition of Functions

If f and g are two functions, the composition of f and g, written $f \circ g$ is defined by the equation

$$f\circ g=f(g(x)),$$

provided that g(x) is in the domain of f.

Example: Suppose
$$f(x) = \sqrt{x}$$
 and $g(x) = 2x + 1$. Then $f(g(x)) = f(2x + 1) = \sqrt{2x + 1}$.

Sets

Combinations

Composition
One to One

Functions

Inverse

Composition of Functions

If f and g are two functions, the composition of f and g, written $f \circ g$ is defined by the equation

$$f \circ g = f(g(x)),$$

provided that g(x) is in the domain of f.

Example: Suppose $f(x) = \sqrt{x}$ and g(x) = 2x + 1. Then $f(g(x)) = f(2x + 1) = \sqrt{2x + 1}$.

Example: Suppose $g \equiv \{(1,2),(3,4),(5,6)\}$ and $f \equiv \{(2,8),(4,9),(1,1)\}$. Find $f \circ g$.

Solution: Since g(1)=2 and f(2)=8, then f(g(1))=8, and (1,8) is an ordered pair in $f\circ g$. Also since g(3)=4 and f(4)=9, then f(g(3))=9, and (3,9) is an ordered pair in $f\circ g$. Now g(5)=6 but 6 is not in the domain of f. So there are only two ordered pairs in $f\circ g$, namely $f\circ g\equiv\{(1,8),(3,9)\}$

Sets

Function Combinations

Function Composition

One to One Functions

Inverse Functions

Composition of Functions

If f and g are two functions, the composition of f and g, written $f \circ g$ is defined by the equation

$$f\circ g=f(g(x)),$$

provided that g(x) is in the domain of f.

Example: Suppose $f(x) = \sqrt{x}$ and g(x) = 2x + 1. Then $f(g(x)) = f(2x + 1) = \sqrt{2x + 1}$.

Example: Suppose $g \equiv \{(1,2), (3,4), (5,6)\}$ and $f \equiv \{(2,8), (4,9), (1,1)\}$. Find $f \circ g$.

Solution: Since g(1)=2 and f(2)=8, then f(g(1))=8, and (1,8) is an ordered pair in $f\circ g$. Also since g(3)=4 and f(4)=9, then f(g(3))=9, and (3,9) is an ordered pair in $f\circ g$. Now g(5)=6 but 6 is not in the domain of f. So there are only two ordered pairs in $f\circ g$, namely $f\circ g\equiv \{(1,8),(3,9)\}$

Comment: the domain of g is $\{1,3,5\}$ while the domain of $f \circ g$ is $\{1,3\}$. In order to find the domain of $f \circ g$ we remove from the domain of g any number x such that g(x) is not in the domain of f.

Intersection o

Function Combinations

Composition

One to One Functions

Inverse Functions

One to one functions have inverses!

A function f with domain D and range R is a $\underline{\text{one to one function}}$ if either of the following equivalent conditions is satisfied:

Whenever $x_1 \neq x_2$ in D, then $f(x_1) \neq f(x_2)$ in R.

Whenever $f(x_1) = f(x_2)$ in R, then $x_1 = x_2$ in D.

Example: $f(x) = x^2$ is *NOT* a one to one function since for $x_1 = -2$ and $x_2 = 2$, it is true that $x_1 \neq x_2$ and $f(x_1) = f(x_2) = 4$.

The Horizontal Line Test

A function f is one to one if and only if every horizontal line intersects the graph of f in at most one point.

Inverse Function

Suppose f is a one to one function, with domain D and range R. The <u>inverse function</u> of f is the function denoted f^{-1} with domain R and range D provided that

$$f^{-1}(f(x))=x$$

Note: A function has an inverse (function) only when it is *one to one*.

Suppose f is a one to one function, with domain D and range R. The <u>inverse function</u> of f is the function denoted f^{-1} with domain R and range D provided that

$$f^{-1}(f(x))=x$$

Note: A function has an inverse (function) only when it is *one to one*.

CAUTION: $f^{-1}(x) \neq f(x)^{-1}$

- $f^{-1}(x)$ is notation for the <u>function inverse</u> of a one to one function f
- $f(x)^{-1} = (f(x))^{-1} = \frac{1}{f(x)}$ is the <u>multiplicative inverse</u> of the number f(x).

Example: Suppose f is one-to-one and f(-9) = 15, then $f^{-1}(15) = -9$ and $(f(-9))^{-1} = 1/15$

Sets Function

Function

Composition

Inverse Functions

Properties of Inverse Functions

Suppose that f is a one to one function with domain D and range R. Then

- The inverse function f^{-1} is unique.
- The domain of f^{-1} is the range of f.
- The range of f^{-1} is the domain of f.
- The statement f(x) = y is equivalent to $f^{-1}(y) = x$

Note: The graph of $y = f^{-1}(x)$ is the reflection of the graph of y = f(x) about the line y = x. For every point (a, b) on the graph of f(x) there is a corresponding point (b, a) on the graph of $f^{-1}(x)$.

Sets

Combinations

Function Composition

One to One Functions

Inverse Functions

Inverse Function

How to find the inverse of a one to one function:

- **1** Replace f(x) with y. Then interchange x and y.
- Solve the resulting equation for y.
- 3 Replace y with $f^{-1}(x)$.