Double check your solutions! Use Algebraic Notation AND Show All of Your Work. You may <u>not</u> leave to use the restroom. You may use a calculator, but not any scratch paper. Students are not allowed to share calculators!

- 1. Solve $\begin{cases} y-3x=-1 \\ y-3x=2 \end{cases}$ by graphing. No credit will be given for any other method. If there is no solution or an infinite number of solutions, so state. Use set-builder notation to express infinite solution sets.
- 2. Solve $\begin{cases} 2x 5y = 1 \\ 3x + y = -7 \end{cases}$ using the **Substitution Method**.

No credit will be given for any other method. Show all your work for full credit. If there is no solution or an infinite number of solutions, so state. Use set-builder notation to express infinite solution sets.

3. Solve
$$\begin{cases} 3x - 7y = 13 \\ 6x + 5y = 7 \end{cases}$$
 using the **Elimination Method**.

No credit will be given for any other method. Show all your work for full credit. If there is no solution or an infinite number of solutions, so state. Use set-builder notation to express infinite solution sets.

4. Solve
$$\begin{cases} 5x - 2y = 8 \\ 3x - 5y = 1 \end{cases}$$
 using the **Elimination Method**.

No credit will be given for any other method. Show all your work for full credit. If there is no solution or an infinite number of solutions, so state. Use set-builder notation to express infinite solution sets.

5. Solve
$$\begin{cases} 12x + 3y = 15 \\ \frac{4}{5}x + \frac{1}{5}y = 1 \end{cases}$$
 using **any method**.

Show all your work for full credit. If there is no solution or an infinite number of solutions, so state. Use set-builder notation to express infinite solution sets.

6. Solve
$$\begin{cases} 6x + 3y = 15 \\ x + \frac{1}{2}y = \frac{7}{2} \end{cases}$$
 using **any method**.

Show all your work for full credit. If there is no solution or an infinite number of solutions, so state. Use set-builder notation to express infinite solution sets.

- 7. Be able to solve two or three problems like those in the Section 8.3 worksheet.
- 8. Find the equilibrium point for the demand and supply functions D(p) = 108 11p and S(p) = 70 + 8p.
- 9. Bob's Basic Solar Company produces solar panels. This year, his projected fixed costs will be \$77,000. The cost for producing each solar panel is \$140. The revenue from selling a single panel is \$250.

Find each of the following:

- (a) The total cost C(x) of producing x solar panels.
- (b) The total revenue R(x) from the sale of x solar panels.
- (c) The total profit P(x) from the production and sale of x panels
- (d) The profit or loss from production and sale of 500 solar panels; of 850 solar panels
- (e) The break-even point

Answers: 1)

2.
$$(x,y) = (-2,-1)$$

3.
$$(x,y) = (2,-1)$$

4.
$$(x,y) = (2,1)$$

5.
$$\{ (x,y) \mid 12x + 3y = 15 \}$$

6.
$$\emptyset$$
 or $\{\ \}$ or "no solution"

7. see the section 8.3 worksheet

8.
$$(price, quantity) = (\$2, 86 \ units)$$

9. Let x represent the number of solar panels manufactured and sold.

a
$$C(x) = 77000 + 140x$$

$$\mathbf{b} \qquad R(x) = 250x$$

$$P(x) = 110x - 77000$$

d
$$P(500) = -\$22,000;$$
 $P(850) = \$16,500$

$$\mathbf{e}$$
 $P(x) = 0$ when $x = 700$ solar panels.