Professor Tim Busken

Department of Mathematics

September 16, 2014

Learning Objectives:

• Find the slope of a line from its graph.

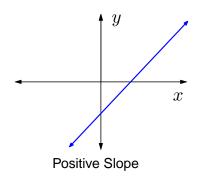
Learning Objectives:

- Find the slope of a line from its graph.
- Find the slope of a line given two points on the line.

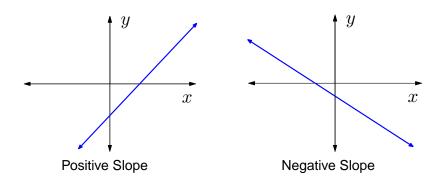
Definition

The slope of a line is a measure of the steepness of the line.

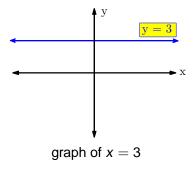
A line that <u>rises</u> from left to right has positive slope.



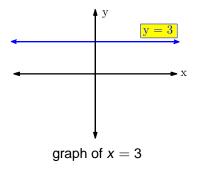
A line that <u>falls</u> from left to right has negative slope.

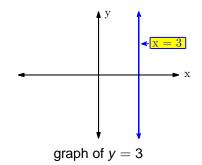


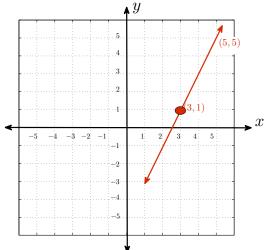
Horizontal lines have zero slope

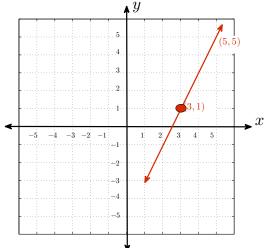


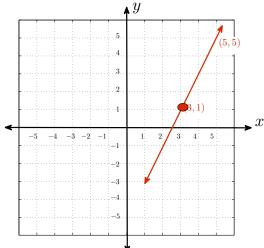
Horizontal lines have zero slope, and vertical lines have no slope.

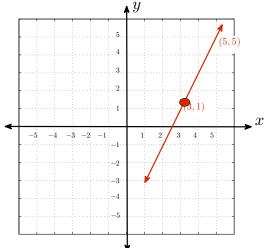


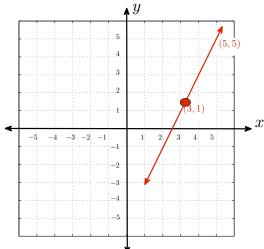


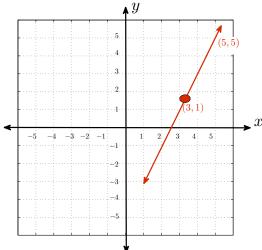


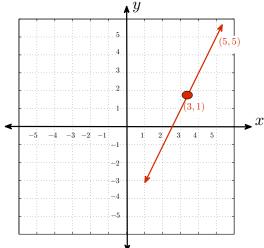


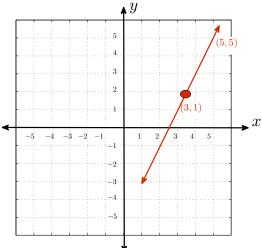


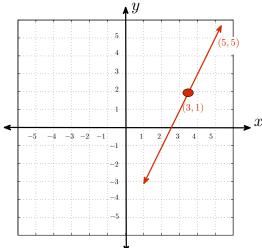


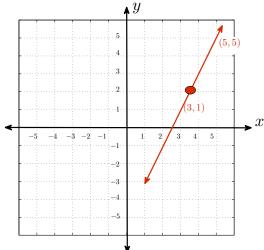


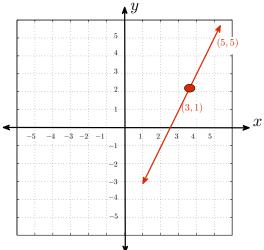


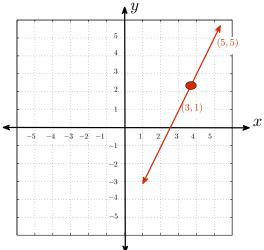


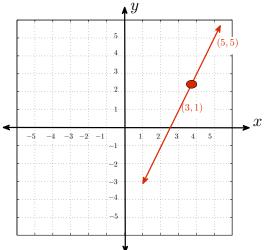


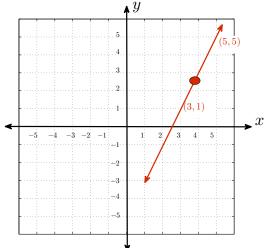


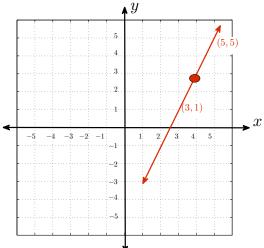


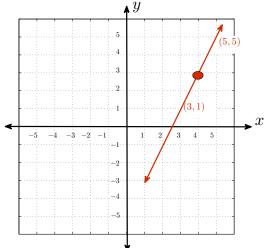


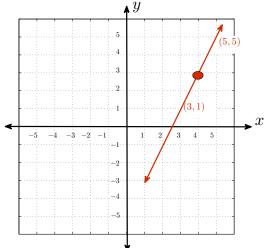


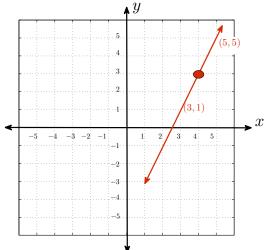


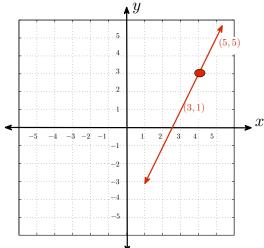


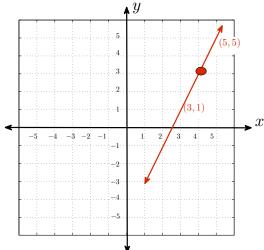


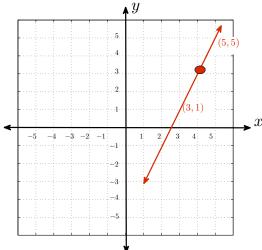


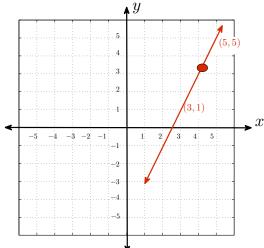


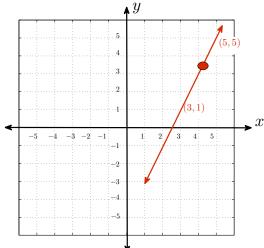


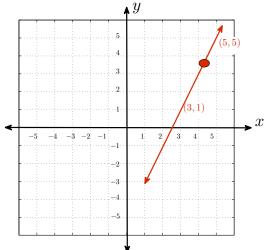


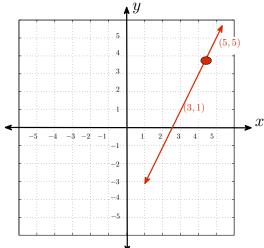


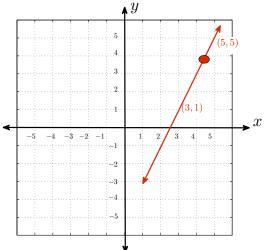


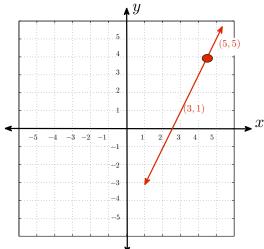


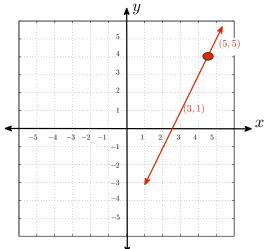


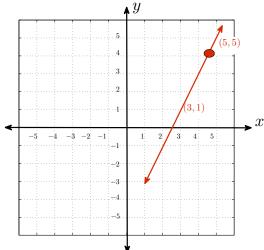


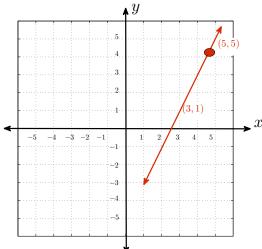


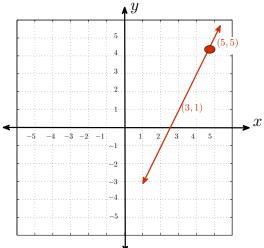


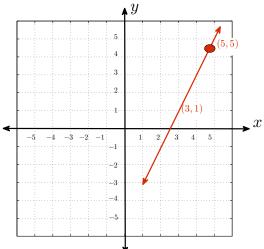


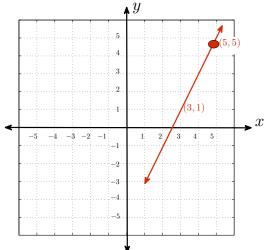


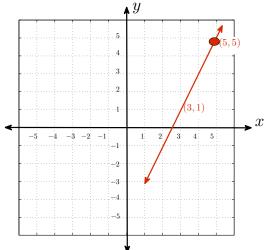


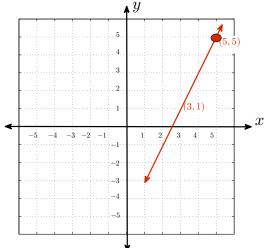


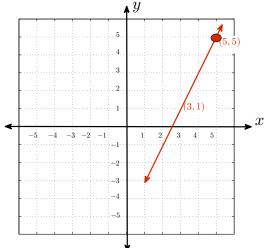


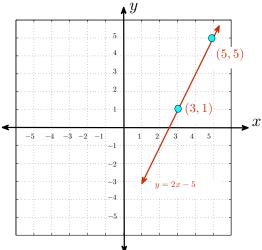


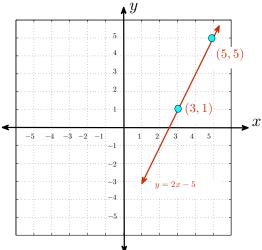


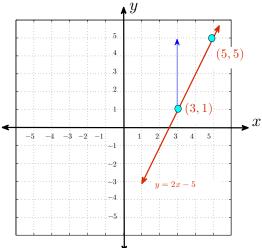


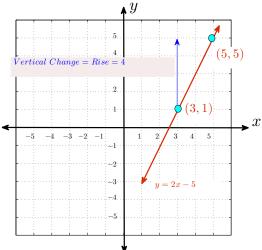


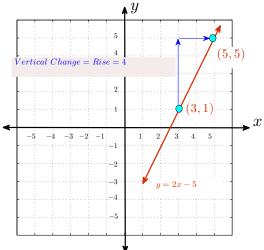


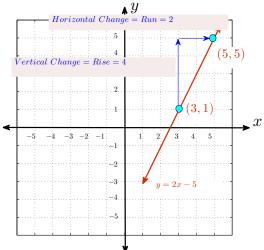




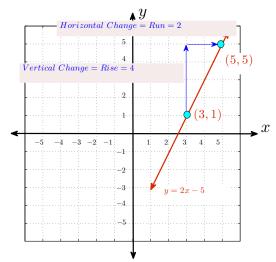




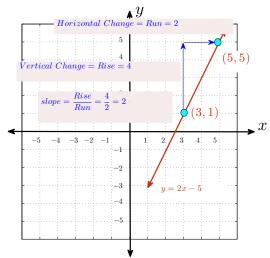




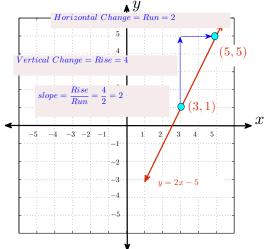
$$slope = \frac{Rise}{Run} = \frac{4}{2} = 2$$

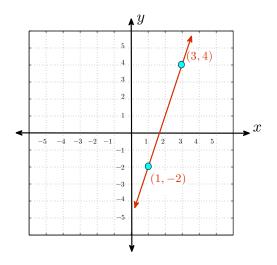


Notice that the vertical change is measured by subtracting the y-coordinates of the two points, 5-1=4.

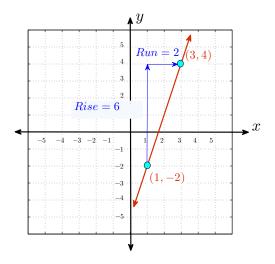


Notice that the vertical change is measured by subtracting the y-coordinates of the two points, 5-1=4. The horizontal change is the difference between the x-coordinates, 5-3=2.

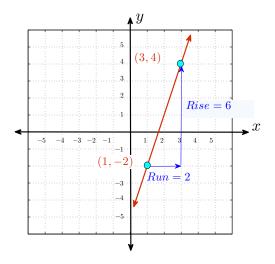




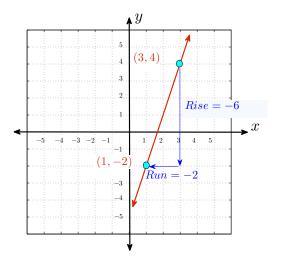
$$slope = \frac{Rise}{Run} = \frac{6}{2} = 3$$



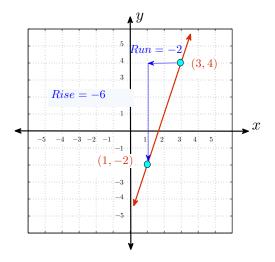
$$slope = \frac{Rise}{Run} = \frac{6}{2} = 3$$

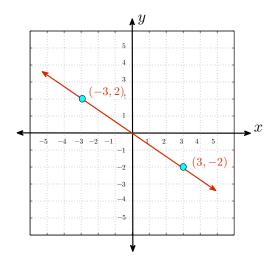


$$slope = \frac{Rise}{Run} = \frac{-6}{-2} = 3$$

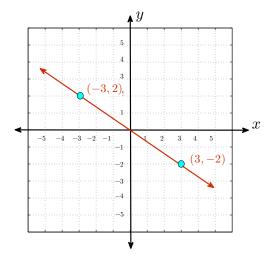


$$slope = \frac{Rise}{Run} = \frac{-6}{-2} = 3$$

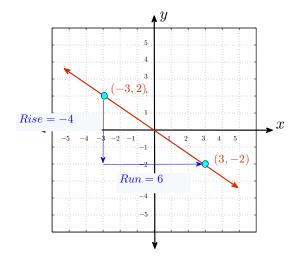




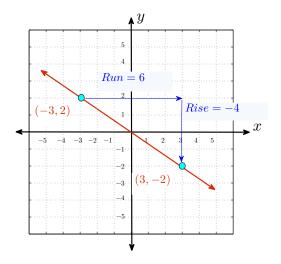
We expect a negative slope for the solution because the graph of the line <u>falls</u> from left to right.



slope =
$$\frac{Rise}{Run} = \frac{-4}{6} = \frac{2 \cdot (-2)}{2 \cdot 3} = \frac{\cancel{2} \cdot (-2)}{\cancel{2} \cdot 3} = -\frac{2}{3}$$



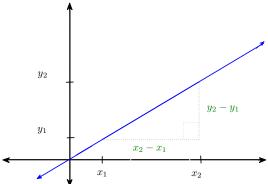
slope =
$$\frac{Rise}{Run} = \frac{-4}{6} = \frac{2 \cdot (-2)}{2 \cdot 3} = \frac{\cancel{2} \cdot (-2)}{\cancel{2} \cdot 3} = -\frac{2}{3}$$



Definition

Let (x_1, y_1) and (x_2, y_2) be any two points on the rectangular coordinate plane. The <u>SLOPE</u> of a line which passes through the points (x_1, y_1) and (x_2, y_2) is m, where m is given by the formula:

$$m = \frac{(y_2 - y_1)}{(x_2 - x_1)}$$



Classroom Examples: Take the next three minutes to work these 2 problems.

Use the slope formula, $m = \frac{(y_2 - y_1)}{(x_2 - x_1)}$, to find the slope of a line containing the given points.

- \bullet (7, -4) and (4, 2)
- (2, -3) and (-1, -3)

Theorem

If line L_1 has slope m_1 and line L_2 has slope m_2 , then

 L_1 is parallel to L_2 if and only if $m_1=m_2$

Theorem

If line L_1 has slope m_1 and line L_2 has slope m_2 , then

$$L_1$$
 is perpendicular to L_2 if and only if $m_1 \cdot m_2 = 1$ $\left(\text{or } m_1 = -\frac{1}{m_2} \right)$

Theorem

If line L_1 has slope m_1 and line L_2 has slope m_2 , then

 L_1 is perpendicular to L_2 if and only if $m_1 \cdot m_2 = 1$ $\left(\text{or } m_1 = -\frac{1}{m_2} \right)$

