## **Definitions and Concepts**

## **Examples**

## Section 10.7 Complex Numbers (continued)

To divide complex numbers, multiply the numerator and the denominator by the conjugate of the denominator in order to obtain a real number in the denominator. This real number becomes the denominator of a and b in the quotient a+bi.

To simplify powers of i, rewrite the expression in terms of  $i^2$ . Then replace  $i^2$  with -1 and simplify.

$$\frac{5+2i}{4-i} = \frac{5+2i}{4-i} \cdot \frac{4+i}{4+i} = \frac{20+5i+8i+2i^2}{16-i^2}$$
$$= \frac{20+13i+2(-1)}{16-(-1)}$$
$$= \frac{20+13i-2}{16+1}$$
$$= \frac{18+13i}{17} = \frac{18}{17} + \frac{13}{17}i$$

Simplify:  $i^{27}$ .  $i^{27} = i^{26} \cdot i = (i^2)^{13} i = (-1)^{13} i = (-1)i = -i$ 

# **CHAPTER 10 REVIEW EXERCISES**

**10.1** *In Exercises 1–5, find the indicated root, or state that the expression is not a real number.* 

1. 
$$\sqrt{81}$$

**2.** 
$$-\sqrt{\frac{1}{100}}$$

3. 
$$\sqrt[3]{-27}$$

**4.** 
$$\sqrt[4]{-16}$$

**5.** 
$$\sqrt[5]{-32}$$

In Exercises 6–7, find the indicated function values for each function. If necessary, round to two decimal places. If the function value is not a real number and does not exist, so state.

**6.** 
$$f(x) = \sqrt{2x - 5}$$
;  $f(15), f(4), f(\frac{5}{2}), f(1)$ 

7. 
$$g(x) = \sqrt[3]{4x - 8}$$
;  $g(4), g(0), g(-14)$ 

*In Exercises* 8–9, find the domain of each square root function.

**8.** 
$$f(x) = \sqrt{x-2}$$

**9.** 
$$g(x) = \sqrt{100 - 4x}$$

In Exercises 10–15, simplify each expression. Assume that each variable can represent any real number, so include absolute value bars where necessary.

**10.** 
$$\sqrt{25x^2}$$

11. 
$$\sqrt{(x+14)^2}$$

**12.** 
$$\sqrt{x^2 - 8x + 16}$$

**13.** 
$$\sqrt[3]{64x^3}$$

**14.** 
$$\sqrt[4]{16x^4}$$

**15.** 
$$\sqrt[5]{-32(x+7)^5}$$

**10.2** *In Exercises 16–18, use radical notation to rewrite each expression. Simplify, if possible.* 

**16.** 
$$(5xy)^{\frac{1}{3}}$$

17. 
$$16^{\frac{3}{2}}$$

**18.** 
$$32^{\frac{1}{5}}$$

he In Exercises 19–20, rewrite each expression with rational exponents.

**19.** 
$$\sqrt{7x}$$

**20.** 
$$(\sqrt[3]{19xy})^5$$

In Exercises 21–22, rewrite each expression with a positive rational exponent. Simplify, if possible.

**22.** 
$$3x(ab)^{-\frac{4}{5}}$$

In Exercises 23–26, use properties of rational exponents to simplify each expression. \_1

**23.** 
$$x^{\frac{1}{3}} \cdot x^{\frac{1}{4}}$$

**24.** 
$$\frac{5^{\frac{1}{2}}}{5^{\frac{1}{3}}}$$

**25.** 
$$(8x^6y^3)^{\frac{1}{3}}$$

**26.** 
$$\left(x^{-\frac{2}{3}}y^{\frac{1}{4}}\right)^{\frac{1}{2}}$$

In Exercises 27–31, use rational exponents to simplify each expression. If rational exponents appear after simplifying, write the answer in radical notation.

**27.** 
$$\sqrt[3]{x^9y^{12}}$$

**28.** 
$$\sqrt[9]{x^3y^3}$$

$$29. \quad \sqrt{x} \cdot \sqrt[3]{x}$$

**30.** 
$$\frac{\sqrt[3]{x^2}}{\sqrt[4]{x^2}}$$

**31.** 
$$\sqrt[5]{\sqrt[3]{x}}$$

**32.** The function  $f(x) = 350x^{\frac{2}{3}}$  models the expenditures, f(x), in millions of dollars, for the U.S. National Park Service x years after 1985. According to this model, what were expenditures in 2012?

**10.3** *In Exercises 33–35, use the product rule to multiply.* 

$$33. \quad \sqrt{3x \cdot \sqrt{7y}}$$

**34.** 
$$\sqrt[5]{7x^2} \cdot \sqrt[5]{11x}$$

**35.** 
$$\sqrt[6]{x-5} \cdot \sqrt[6]{(x-5)^4}$$

**36.** If  $f(x) = \sqrt{7x^2 - 14x + 7}$ , express the function, f, in simplified form. Assume that x can be any real number.

767

**37.** 
$$\sqrt{20x^3}$$

**38.** 
$$\sqrt[3]{54x^8y^6}$$

**39.** 
$$\sqrt[4]{32x^3y^{11}z^5}$$

In Exercises 40–43, multiply and simplify, if possible. Assume that all variables in a radicand represent positive real numbers.

**40.** 
$$\sqrt{6x^3} \cdot \sqrt{4x^2}$$

**41.** 
$$\sqrt[3]{4x^2y} \cdot \sqrt[3]{4xy^4}$$

**42.** 
$$\sqrt[5]{2x^4y^3z^4} \cdot \sqrt[5]{8xy^6z^5}$$

**43.** 
$$\sqrt{x+1} \cdot \sqrt{x-1}$$

**10.4** Assume that all variables represent positive real numbers. In Exercises 44–47, add or subtract as indicated.

**44.** 
$$6\sqrt[3]{3} + 2\sqrt[3]{3}$$

**45.** 
$$5\sqrt{18} - 3\sqrt{8}$$

**46.** 
$$\sqrt[3]{27x^4} + \sqrt[3]{xy^6}$$

**47.** 
$$2\sqrt[3]{6} - 5\sqrt[3]{48}$$

In Exercises 48–50, simplify using the quotient rule.

**48.** 
$$\sqrt[3]{\frac{16}{125}}$$

**49.** 
$$\sqrt{\frac{x^3}{100y^4}}$$

**50.** 
$$\sqrt[4]{\frac{3y^5}{16x^{20}}}$$

In Exercises 51–54, divide and, if possible, simplify.

**51.** 
$$\frac{\sqrt{48}}{\sqrt{2}}$$

**52.** 
$$\frac{\sqrt[3]{32}}{\sqrt[3]{2}}$$

**53.** 
$$\frac{\sqrt[4]{64x^7}}{\sqrt[4]{2x^2}}$$

**54.** 
$$\frac{\sqrt{200x^3y^2}}{\sqrt{2x^{-2}y}}$$

**10.5** Assume that all variables represent positive real numbers.

In Exercises 55–62, multiply as indicated. If possible, simplify any radical expressions that appear in the product.

**55.** 
$$\sqrt{3}(2\sqrt{6} + 4\sqrt{15})$$

**56.** 
$$\sqrt[3]{5}(\sqrt[3]{50} - \sqrt[3]{2})$$

**57.** 
$$(\sqrt{7} - 3\sqrt{5})(\sqrt{7} + 6\sqrt{5})$$

**58.** 
$$(\sqrt{x} - \sqrt{11})(\sqrt{y} - \sqrt{11})$$

**59.** 
$$(\sqrt{5} + \sqrt{8})^2$$

**60.** 
$$(2\sqrt{3} - \sqrt{10})^2$$

**61.** 
$$(\sqrt{7} + \sqrt{13})(\sqrt{7} - \sqrt{13})$$

**62.** 
$$(7-3\sqrt{5})(7+3\sqrt{5})$$

*In Exercises 63–75, rationalize each denominator. Simplify, if possible.* 

**63.** 
$$\frac{4}{\sqrt{6}}$$

**64.** 
$$\sqrt{\frac{2}{7}}$$

**65.** 
$$\frac{12}{\sqrt[3]{9}}$$

**66.** 
$$\sqrt{\frac{2x}{5y}}$$

**67.** 
$$\frac{14}{\sqrt[3]{2x^2}}$$

**68.** 
$$\sqrt[4]{\frac{7}{3x}}$$

**69.** 
$$\sqrt[5]{\sqrt[5]{32x^4y}}$$

**70.** 
$$\frac{6}{\sqrt{3}}$$

**71.** 
$$\frac{\sqrt{7}}{\sqrt{5} + \sqrt{3}}$$

**72.** 
$$\frac{10}{2\sqrt{5}-3\sqrt{2}}$$

**73.** 
$$\frac{\sqrt{x} + 5}{\sqrt{x} - 3}$$

**74.** 
$$\frac{\sqrt{7} + \sqrt{3}}{\sqrt{7} - \sqrt{3}}$$

**75.** 
$$\frac{2\sqrt{3} + \sqrt{6}}{2\sqrt{6} + \sqrt{3}}$$

In Exercises 76–79, rationalize each numerator. Simplify, if possible.

**76.** 
$$\sqrt{\frac{2}{7}}$$

77. 
$$\frac{\sqrt[3]{3x}}{\sqrt[3]{y}}$$

**78.** 
$$\frac{\sqrt{7}}{\sqrt{5} + \sqrt{3}}$$

**79.** 
$$\frac{\sqrt{7} + \sqrt{3}}{\sqrt{7} - \sqrt{3}}$$

10.6 In Exercises 80–84, solve each radical equation.

**80.** 
$$\sqrt{2x+4}=6$$

**81.** 
$$\sqrt{x-5} + 9 = 4$$

**82.** 
$$\sqrt{2x-3} + x = 3$$

**83.** 
$$\sqrt{x-4} + \sqrt{x+1} = 5$$

**84.** 
$$(x^2 + 6x)^{\frac{1}{3}} + 2 = 0$$

**85.** The bar graph shows the percentage of U.S. college freshmen who described their health as "above average" for six selected years.

### Self-Assessment of Physical Health by U.S. College Freshmen



Source: John Macionis, Sociology, Fourteenth Edition, Pearson, 2012.

#### The function

$$f(x) = -1.6\sqrt{x} + 54$$

models the percentage of freshmen women who described their health as above average, f(x), x years after 1985.

- **a.** Find and interpret f(20). Round to the nearest tenth of a percent. How does this rounded value compare with the percentage of women displayed by the graph?
- **b.** According to the model, in which year will 44.4% of freshmen women describe their health as above average?