767

37.
$$\sqrt{20x^3}$$

38.
$$\sqrt[3]{54x^8y^6}$$

39.
$$\sqrt[4]{32x^3y^{11}z^5}$$

In Exercises 40–43, multiply and simplify, if possible. Assume that all variables in a radicand represent positive real numbers.

40.
$$\sqrt{6x^3} \cdot \sqrt{4x^2}$$

41.
$$\sqrt[3]{4x^2y} \cdot \sqrt[3]{4xy^4}$$

42.
$$\sqrt[5]{2x^4y^3z^4} \cdot \sqrt[5]{8xy^6z^5}$$

43.
$$\sqrt{x+1} \cdot \sqrt{x-1}$$

10.4 Assume that all variables represent positive real numbers. In Exercises 44–47, add or subtract as indicated.

44.
$$6\sqrt[3]{3} + 2\sqrt[3]{3}$$

45.
$$5\sqrt{18} - 3\sqrt{8}$$

46.
$$\sqrt[3]{27x^4} + \sqrt[3]{xy^6}$$

47.
$$2\sqrt[3]{6} - 5\sqrt[3]{48}$$

In Exercises 48–50, simplify using the quotient rule.

48.
$$\sqrt[3]{\frac{16}{125}}$$

49.
$$\sqrt{\frac{x^3}{100y^4}}$$

50.
$$\sqrt[4]{\frac{3y^5}{16x^{20}}}$$

In Exercises 51–54, divide and, if possible, simplify.

51.
$$\frac{\sqrt{48}}{\sqrt{2}}$$

52.
$$\frac{\sqrt[3]{32}}{\sqrt[3]{2}}$$

53.
$$\frac{\sqrt[4]{64x^7}}{\sqrt[4]{2x^2}}$$

54.
$$\frac{\sqrt{200x^3y^2}}{\sqrt{2x^{-2}y}}$$

10.5 Assume that all variables represent positive real numbers.

In Exercises 55–62, multiply as indicated. If possible, simplify any radical expressions that appear in the product.

55.
$$\sqrt{3}(2\sqrt{6} + 4\sqrt{15})$$

56.
$$\sqrt[3]{5}(\sqrt[3]{50} - \sqrt[3]{2})$$

57.
$$(\sqrt{7} - 3\sqrt{5})(\sqrt{7} + 6\sqrt{5})$$

58.
$$(\sqrt{x} - \sqrt{11})(\sqrt{y} - \sqrt{11})$$

59.
$$(\sqrt{5} + \sqrt{8})^2$$

60.
$$(2\sqrt{3} - \sqrt{10})^2$$

61.
$$(\sqrt{7} + \sqrt{13})(\sqrt{7} - \sqrt{13})$$

62.
$$(7-3\sqrt{5})(7+3\sqrt{5})$$

In Exercises 63–75, rationalize each denominator. Simplify, if possible.

63.
$$\frac{4}{\sqrt{6}}$$

64.
$$\sqrt{\frac{2}{7}}$$

65.
$$\frac{12}{\sqrt[3]{9}}$$

66.
$$\sqrt{\frac{2x}{5y}}$$

67.
$$\frac{14}{\sqrt[3]{2x^2}}$$

68.
$$\sqrt[4]{\frac{7}{3x}}$$

69.
$$\sqrt[5]{\sqrt[5]{32x^4y}}$$

70.
$$\frac{6}{\sqrt{3}}$$

71.
$$\frac{\sqrt{7}}{\sqrt{5} + \sqrt{3}}$$

72.
$$\frac{10}{2\sqrt{5}-3\sqrt{2}}$$

73.
$$\frac{\sqrt{x} + 5}{\sqrt{x} - 3}$$

74.
$$\frac{\sqrt{7} + \sqrt{3}}{\sqrt{7} - \sqrt{3}}$$

75.
$$\frac{2\sqrt{3} + \sqrt{6}}{2\sqrt{6} + \sqrt{3}}$$

In Exercises 76–79, rationalize each numerator. Simplify, if possible.

76.
$$\sqrt{\frac{2}{7}}$$

77.
$$\frac{\sqrt[3]{3x}}{\sqrt[3]{y}}$$

78.
$$\frac{\sqrt{7}}{\sqrt{5} + \sqrt{3}}$$

79.
$$\frac{\sqrt{7} + \sqrt{3}}{\sqrt{7} - \sqrt{3}}$$

10.6 In Exercises 80–84, solve each radical equation.

80.
$$\sqrt{2x+4}=6$$

81.
$$\sqrt{x-5} + 9 = 4$$

82.
$$\sqrt{2x-3} + x = 3$$

83.
$$\sqrt{x-4} + \sqrt{x+1} = 5$$

84.
$$(x^2 + 6x)^{\frac{1}{3}} + 2 = 0$$

85. The bar graph shows the percentage of U.S. college freshmen who described their health as "above average" for six selected years.

Self-Assessment of Physical Health by U.S. College Freshmen

Source: John Macionis, Sociology, Fourteenth Edition, Pearson, 2012.

The function

$$f(x) = -1.6\sqrt{x} + 54$$

models the percentage of freshmen women who described their health as above average, f(x), x years after 1985.

- **a.** Find and interpret f(20). Round to the nearest tenth of a percent. How does this rounded value compare with the percentage of women displayed by the graph?
- **b.** According to the model, in which year will 44.4% of freshmen women describe their health as above average?

$$f(x) = 5000\sqrt{100 - x}.$$

To what age will 20,000 people in the group survive?

10.7 *In Exercises 87–89, express each number in terms of i and simplify, if possible.*

87.
$$\sqrt{-81}$$

88.
$$\sqrt{-63}$$

89.
$$-\sqrt{-8}$$

In Exercises 90–99, perform the indicated operation. Write the result in the form a+bi.

90.
$$(7 + 12i) + (5 - 10i)$$

91.
$$(8-3i)-(17-7i)$$

92.
$$4i(3i-2)$$

93.
$$(7-5i)(2+3i)$$

94.
$$(3-4i)^2$$

95.
$$(7 + 8i)(7 - 8i)$$

96.
$$\sqrt{-8} \cdot \sqrt{-3}$$

97.
$$\frac{6}{5+}$$

98.
$$\frac{3+4i}{4-2i}$$

99.
$$\frac{5+}{3i}$$

In Exercises 100–101, simplify each expression.

100.
$$i^{10}$$

101.
$$i^{23}$$

CHAPTER 10 TEST

Step-by-step test solutions are found on the Chapter Test Prep Videos available in MyMathLab* or on You 1000 (search "BlitzerComboAlg5e" and click on "Channels").

1. Let $f(x) = \sqrt{8 - 2x}$.

a. Find f(-14).

b. Find the domain of f.

2. Evaluate: $27^{-\frac{4}{3}}$

3. Simplify: $(25x^{-\frac{1}{2}}y^{\frac{1}{4}})^{\frac{1}{2}}$.

In Exercises 4–5, use rational exponents to simplify each expression. If rational exponents appear after simplifying, write the answer in radical notation.

4.
$$\sqrt[8]{x^4}$$

5.
$$\sqrt[4]{x} \cdot \sqrt[5]{x}$$

In Exercises 6–9, simplify each expression. Assume that each variable can represent any real number.

6.
$$\sqrt{75x^2}$$

7.
$$\sqrt{x^2 - 10x + 25}$$

8.
$$\sqrt[3]{16x^4y^8}$$

9.
$$\sqrt[5]{-\frac{32}{r^{10}}}$$

In Exercises 10–17, perform the indicated operation and, if possible, simplify. Assume that all variables represent positive real numbers.

10.
$$\sqrt[3]{5x^2} \cdot \sqrt[3]{10y}$$

11.
$$\sqrt[4]{8x^3y} \cdot \sqrt[4]{4xy^2}$$

12.
$$3\sqrt{18} - 4\sqrt{32}$$

13.
$$\sqrt[3]{8x^4} + \sqrt[3]{xy^6}$$

14.
$$\frac{\sqrt[3]{16x^8}}{\sqrt[3]{2x^4}}$$

15.
$$\sqrt{3}(4\sqrt{6}-\sqrt{5})$$

16.
$$(5\sqrt{6} - 2\sqrt{2})(\sqrt{6} + \sqrt{2})$$

17.
$$(7-\sqrt{3})^2$$

In Exercises 18–20, rationalize each denominator. Simplify, if possible. Assume all variables represent positive real numbers.

18.
$$\sqrt{\frac{5}{x}}$$

19.
$$\frac{5}{\sqrt[3]{5x^2}}$$

20.
$$\frac{\sqrt{2} - \sqrt{3}}{\sqrt{2} + \sqrt{3}}$$

In Exercises 21–23, solve each radical equation.

21.
$$3 + \sqrt{2x - 3} = x$$

22.
$$\sqrt{x+9} - \sqrt{x-7} = 2$$

23.
$$(11x + 6)^{\frac{1}{3}} + 3 = 0$$

$$f(x) = 2.9\sqrt{x} + 20.1$$

models the average height, f(x), in inches, of boys who are x months of age, $0 \le x \le 60$. Find the age at which the average height of boys is 40.4 inches.

25. Express in terms of *i* and simplify: $\sqrt{-75}$.

In Exercises 26–29, perform the indicated operation. Write the result in the form a + bi.

26.
$$(5-3i)-(6-9i)$$

27.
$$(3-4i)(2+5i)$$

28.
$$\sqrt{-9} \cdot \sqrt{-4}$$

29.
$$\frac{3+i}{1-2}$$

30. Simplify: *i*³⁵.